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Our recently developed Fourier Monte Carlo algorithm permits a nonperturbative calculation of momentum-
shell renormalization-group flows by simulation which despite its apparent simplicity is illustrative both nu-
merically as well as conceptually interesting. We study the example of a �4 model with long-range lattice
interaction. For this model we show that the topology of the renormalization flow is globally accessible in a
particularly convenient way. The nontrivial fixed point of Wilson-Fisher type is observed its accompanying
critical exponents are numerically determined from fitting its surrounding flow pattern to a linearized
renormalization-group transformation. The results are compared to those obtained from perturbation theory,
�-expansion and earlier Monte Carlo simulations. Application of our method is also expected to be rewarding
in other models with long-range interactions.
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The paradigm of the renormalization group �RG� contin-
ues to represent a major line of thinking in modern theoret-
ical physics. Resembling a milestone in our understanding of
the physics of collective behavior of a large number of de-
grees of freedom, RG ideas are of central importance in such
diverse fields as the theory of phase transitions and quantum
field theory �1,2�, strongly correlated quantum systems �3�,
or turbulence �4�. Resting on such fundamental concepts
such as scale invariance, asymptotic behavior, power laws,
and self-similarity, it is not surprising that the rather abstract
underlying philosophy of the RG also manifest itself in a
large diversity of different computational schemes. However,
momentum shell renormalization-group transformations in
combination with the �-expansion �5,6� are usually the
method of choice employed in the literature �7� when it
comes to introducing RG fundamentals, as it neither requires
complicated mathematics nor abstract field theoretic con-
cepts. The general strategy consists of constructing a recur-
sion relation for the effective Hamiltonian of “slow” �i.e.,
long wavelength� degrees of freedom of a given system by
integrating over the “fast” variables residing in a wave vector
“shell” � /b� �k���, b�1, below �8� a given wave-vector
cutoff �. This coarse-graining �CG� step is followed by ac-
companying rescaling operations to restore the original cut-
off �, which must be tuned in a delicate way to allow for a
nontrivial fixed point �FP�. In analyzing the topology of the
resulting flow in the space of coupling constants, the notion
of relevant, irrelevant, and marginal couplings and the con-
cept of universality naturally emerges. Once the FP is
known, the critical exponents can in principle be calculated
from the fixed rescaling factor and the eigenvalues of the
linearized RG transform at this FP.

All of the above reasoning is in principle exact. Analyti-
cally, however, the CG step is difficult to carry out, and one
needs to resort to approximative methods. Unfortunately, a
perturbative treatment seemed to lack a corresponding “small
parameter.” However, analyzing the archetypical case of
the so-called Landau-Ginzburg �LG� or �4 model with

dimensionless Hamiltonian H�s�=�ddx�
K2

2 ��s�2�x�+
r0

2 s2�x�
+

u0

4 s4�x�� with short-range �SR� lattice interaction
�x

K2

2 ��s�2�x�, Wilson and Fisher �5� observed that while
above the critical dimension dc

�SR�=4 the physical critical be-
havior is governed by the Gaussian fixed point values
�u

0
* ,r

0
*�= �0,0�, for d�dc

�SR� the fixed point couplings u
0
* and

r
0
* are both proportional to �=4−d, which can therefore

serve as the sought-after expansion parameter. Unfortunately,
within Wilson’s original momentum-shell scheme, concrete
perturbative corrections beyond O��2� turn out to be of for-
midable complexity. Instead, in a number of important cases,
field theoretic perturbation theory augmented by sophisti-
cated Borel or variational resummation techniques �9� pro-
vides a practical calculation scheme to compute universal
quantities with high precision.

After several decades of research, however, it is sobering
to find that fortunate properties like Borel summability of the
resulting asymptotic series is rather the exception than the
rule and has only been proven in rare instances, Also, fre-
quently the required information on higher perturbative or-
ders is simply not available �1�. Therefore, nonperturbative
approaches are at the present focus of attention �2�. Analyti-
cally, this represents a formidable challenge. Nevertheless, it
is clear that computer simulations, in particular of the Monte
Carlo �MC� type, in particular if combined with finite-size
scaling, are capable of yielding “exact” results. However, for
a number of reasons it seems difficult to combine a MC type
of approach with Wilson’s original momentum-shell pre-
scription. First, quite trivially, simulations are confined to
systems of integer dimension d, such that the gradual sepa-
ration of the Wilson-Fisher fixed point �WFFP� �u

0
* ,r

0
*� from

the Gaussian fixed point �0, 0� for growing � cannot be stud-
ied systematically. Also, instead of momentum space, con-
ventional MC simulations are set up on direct space lattices,
for which Wilson’s momentum space coarse-graining step is
extremely cumbersome to reproduce. As we have recently
shown �10�, the latter difficulty can, however, be avoided by
performing MC simulations directly in Fourier space, using
the real and imaginary parts of the order parameter Fourier
amplitudes as basic MC variables. We refer to Ref. �10� for a
detailed description of this algorithm. Within the standard*andreas.troester@univie.ac.at
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short-range LG model, however, also our Fourier Monte
Carlo �FMC� based approach faces considerable difficulties.
Again, only d=integer is possible. According to an
�-expansion analysis, in d=4 the Gaussian fixed point �GFP�
and the WFFP coincide, while in d=3 dimensional analysis
suggests that in principle at least a sixth-order interaction
�u0 /6�s6�x� should also be kept in the Hamiltonian, which
considerably diminishes the efficiency of the algorithm pre-
sented in Ref. �10�. Moreover, in order to reach the WFFP, it
is necessary to determine the field rescaling factor z�b�
=b�d+2−�SR�/2, i.e., the exponent �SR, from the requirement to
keep the rescaled coefficient K2 of the transformed gradient
dispersion term K2��s��2�x� unchanged. While in a real
space simulation we are not aware of any straightforward
way to achieve this, in FMC the CG dispersion can indeed
been determined �10� and—outside the critical region—was
observed to be rather inert. Inside the critical region, we
therefore suspect that �owing to the actual smallness of the
exponent �� extensive numerical work may be required to
compute z�b� with sufficient precision.

Fortunately, there is a model closely related to the original
LG model, which allows us to overcome most of the above
difficulties. In this model, the SR lattice interaction is
complemented by an additional long-range �LR� interaction
of type �ddx�ddy�K� /2� s�x�s�y�

�x−y�d+� , where ��0 ensures exis-
tence of the thermodynamic limit. In momentum space, this
leads to an additional “�-dispersion” �1 /2�K��k�� apart from
the analytic gradient term �1 /2�K2�k�2. A RG analysis of this
model �11–15� shows that for ��2, this term is irrelevant
and the critical behavior of the model is that of the LG uni-
versality class. However, for ��2 the long-range character
of the interaction becomes effective. By definition, above the
�-dependent upper critical dimension dc

�LR����=2�, the
model appears to follow mean-field behavior, while for d
�dc

�LR���� a long-range fixed point �LRFP� similar to the
WFFP appears that governs the critical behavior. Since the
“small” perturbative expansion parameter is now �̃ªdc���
−d=2�−d, the fact that dc

�LR���� can be “tuned” with � al-
lows for the �̃-expansion to be reinterpreted �11� as an ex-
pansion for fixed d and variable �. As the corresponding
corrections are purely analytic, the requirement of K� to be
invariant yields z�b�=b�d+��/2 and thus �LR=2−� to all or-
ders of perturbation theory, a RG result which has also been
confirmed numerically �14,15�. From the point of view of
simulations, this is a large technical advantage over the SR
case: Here we do not have to determine z�b� or � from fitting
dispersion corrections—they are known exactly. Since an ar-
bitrary coupling term in the Hamiltonian involving q spatial
derivatives and 2n powers of s�x� is found to receive a res-
caling factor bn�−�1−n�d−q, actually only r0, u0, and K2 remain
on the list of “interesting” couplings. Among these, the “tem-
perature” r0 corresponds roughly to the single relevant direc-
tion in parameter space, as necessary for a generic critical
point in the absence of an external field. Short-range lattice
interactions are always present in a real system, but the over-
all scaling factor b�−2 signals the irrelevance of K2 in this RG
transformation. Nevertheless, even if initially K2=0, coarse
graining will produce a nonzero coefficient representing the
analytic dispersion flow. In fact, Sak �13� argues that the
crossover to the short-range LG model takes place not at �

=2 but already at �=2−�SR, removing a superficial jump
discontinuity of �LR as �→2. This odd behavior is attributed
to the increasingly non-negligible effect of the flow around
the fixed point value K

2
*, which is only zero to order �̃. In

fact this point is still under considerable debate �cf. the dis-
cussion in Ref. �15��. At present we only point out that the
SR coupling term must be properly taken into account when
attempting to study this crossover behavior. Summarizing the
situation, at fixed d=3 and 1.5��	2−�SR�1.97 we
should get away with studying the projection of the corre-
sponding SRFP and their global surrounding RG flow onto
the �u0 ,r0� plane.

Our simulations are built on a simple three-dimensional
�3D� cubic lattice with N=L3 sites, lattice constant a=1, and
periodic boundary conditions. To avoid finite-size inaccura-
cies in the definition of the spatial scaling parameter b, we
introduce cubic �instead of spherical� cutoffs �=2
l /L, ��
=2
l� /L1� l�� l�L /2 parametrized by integers l , l� for the
wave-vector components ki=2
mi /L, −L /2+1�mi�L /2,
mi�Z and set b� l / l�, such that ��=� /b. The correspond-
ing coarse-grained coefficients ũ0= ũ0�u0 ,r0 ,� ,b�, r̃0
= r̃0�u0 ,r0 ,� ,b� are obtained from a polynomial fit �10� of
the effective free energy as a function of s̃�0� by averaging
out all Fourier amplitudes s̃�k� for � /b� �ki � ��. To deter-
mine the central barrier and the “wings” of this free energy
accurately, we combine the Wang-Landau approach �16�
with our FMC algorithm. We also need to address the ques-
tion of how to find a lattice-periodic dispersion resembling
�k��. As a nearest-neighbor interaction translates into a lattice
dispersion 4	i=1

d sin2 ki

2 , we replace the continuum long-range
dispersion �k�� by ���k ;1�, where we abbreviate �2�k ;n�
ª	i=1

d �4 sin2 k2

2 �n. To shift the cubic anisotropy in this ex-
pression further towards the Brillouin zone boundary, we ac-
tually used the slightly “improved” long-range dispersion
form

�k�� ª �2�k;1�
1 +
�

24

�2�k;2�
�2�k;1�� . �1�

A total of 30�30 initial parameter points �u0 ,r0� was used to
determine each RG flow, and each such flow diagram was
averaged over 10 independent sets, yielding a total of 9000
individual Wang-Landau simulations per diagram. To locate
the WFFP K*��u

0
* ,r

0
*� and determine the critical exponents

governed by the flow K= �u0 ,r0�→K�= �u0� ,r0��, we again
proceed in the spirit of the RG. In the vicinity of K* the flow
is approximated by a linearized RG of type

K� = K* + R · �K − K*� . �2�

The exact location K* and the matrix elements Rij , i , i=1,2
can thus be determined from a least-squares fit of this equa-
tion in the approximate neighborhood of the fixed point.
From the eigenvalues � and u of R we estimate the corre-
lation length exponent �=1 /y� and the leading irrelevant ex-
ponent �=−yu, where yi=ln i / ln b, i=� ,u. In Fig. 1, we
show a prototypical fit obtained for the RG flow at L=36,
�=1.65, K2=0, and K�=1, subject to cutoffs parametrized
by l=9, l�=7, i.e., b=9 /7. Such simulations were performed
for several values of � in the region 0.58���0.7. For
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smaller �, i.e., in the crossover region 1.5���0.58 to the
Gaussian fixed point we were unable to locate K* with suf-
ficient accuracy.

In principle, the results for the location of the nontrivial
fixed point and the exponent y� obtained by the method
sketched above can be compared to the corresponding ana-
lytical �̃-expansion predictions. However, when attempting
such a comparison, one should be aware of several sources
of discrepancy, which will generally affect the numerical val-
ues of both nonuniversal as well as universal quantities.

As to the nonuniversal ones, in fitting the RG flow to the
linearized ansatz �2�, the choice of the fitting range surround-
ing the RGFP has a tiny but non-negligible effect on the
results due to flow nonlinearities. More interestingly, it is
clear that simulations of the above type must necessarily be
performed on finite systems and are therefore contaminated
by a certain finite-size effect. Somehow related to this prob-
lem is the fact that to compute the RG flow the coarse-
graining step of the RG transformation must be carried out
using a momentum shell of finite thickness instead of the
infinitesimally thin one �setting b=1+�, �→0� that is used
in analytical calculations at the thermodynamic limit. Apart
from this, it is well known that, as a rule, the location of K*

itself, which is calculated as

u0
* =


�����
9 � 21−2� �̃ + O��̃2� , �3�

r0
* = −

��

3�
�̃ + O��̃2� �4�

for d=3 and K�=1, cannot be expected to be universal any-
way, as, e.g., r0 depends manifestly on the cutoff �. In ad-
dition, the cutoff geometry is chosen to be spherical in the
analytic calculation, while a cubic one is used in the simula-
tion. On the other hand, the analytic values �3� and �4� only
represent perturbative first-order results in �̃.

We now turn to the discussion of the numerical values
found for the universal quantities. As to the analytical calcu-
lation of critical exponents, the result for the exponent � in
order �̃2 was announced in Ref. �11�, and the “sticking” of �
to the value �=2−�+O��̃3� was verified to third order. From

these expressions, all other �leading� exponents can thus be
calculated in order �̃2 by employing the usual scaling rela-
tions. Here we quote the result announced for the exponent
y� as �14�

y� = � −
�̃

3
−

1

6

A���
�

�̃2 + O��̃3� , �5�

where, denoting the digamma function by ��z�
ª���z� /��z�, we abbreviate

A���
�

= ��1� − 2���/2� + ���� . �6�

Unfortunately, details of the derivation of these formulas,
which were carried out using the “matching condition tech-
nique” of Wilson �17� instead of an even more laborious
second-order momentum-shell calculation, seem to have
never been presented, but the calculations are reported to be
quite involved �11�. As to the �̃-expansion calculation of the
first subleading correction exponent �, we are only aware of
the first-order result

� = 2� − 3 + O��̃2� . �7�

In any case, we should be prepared to observe that as far
as the values obtained for the critical exponents from our
simulations are concerned, the results will only be of an ac-
curacy similar to those of the first-order �̃-expansion. This is
a simple consequence of the fact that even though a MC
simulation is “nonperturbative” in nature, in evaluating the
resulting data the full RG flow is projected onto the two-
dimensional �u0 ,r0� plane, not taking into account the flow in
the remaining directions in the full �infinite-dimensional�
space of coupling constants, which is very much in the spirit
of the �̃-expansion. In addition, the finite system size will
also introduce a corresponding error in determining the criti-
cal exponents.

Despite the above difficulties, it is interesting to compare
our present simulations to results obtained from a first-order
perturbative approach. In the thermodynamic limit, the cor-
responding Feynman diagrams would be calculated as
momentum-shell integrals. To permit a “fair” comparison to
our results, which are calculated for a finite system, we re-
place these loop integrals over infinitesimally thin shells with
sums over k vectors residing in the finite shell � /b� �k�
��, which yields the recursion relations

r̃0 = r0 + 3u0
1

N
	

k
G̃�,b�k� , �8�

ũ0 = u0
1 − 9u0
1

N
	

k
G̃�,b

2 �k�� �9�

valid for our finite system, where G̃�,b�k�=1 / ��k��+r0� for
� /b� �k��� and zero elsewhere. In this way, those discrep-
ancies between simulation and perturbation theory which
merely arise from finite-size effects and different cutoff ge-
ometries are eliminated. Indeed, at least qualitatively the glo-
bal topology of the corresponding flow resembles that found
in the simulations �see Fig. 2�. Based on low-order perturba-

115 120 125 130
u0

�0.45

�0.4

�0.35

�0.3

�0.25
r 0

FIG. 1. �Color online� RG flow in the �u0 ,r0� plane around the
SRFP. Parameters L=36, �=1.65, l=9, b=9 /7. Black, simulation
results; orange �gray�, fit to linearized RG transformation �fit region
indicated�. The two thick black lines denote the eigendirections of
the linearized transformation.
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tion theory, the locations of the corresponding calculated
fixed points still show a systematic deviation from those
found in the simulations. However, we are surprised to find
that all fixed points obtained from simulations and perturba-
tive calculations seem to collapse onto a single trajectory �cf.
top of Fig. 3�.

The subleading correction exponent � obtained from fit-
ting the simulated or perturbatively calculated flow patterns
to a linearized RG transformation is in reasonable agreement
with the corresponding O��̃� results from the �̃-expansion
�cf. Table I and the bottom figure in Fig. 3�.

In contrast, for the exponent y�, apart from the O��̃2� re-
sults of Eq. �5� also high-precision finite-size scaling results
by Luijten �14,15� are available. Their comparison to the
first-order truncated results and to those obtained from our
two-dimensional flow patterns is quite instructive. As one
can observe from Table I and the middle figure of Fig. 3,
there is a close-to-perfect agreement of the numerical data of
Refs. �14,15� with those of the second-order �̃-expansion
predictions in the approximate range 1.5���1.7. The de-
viations observed between these high-precision studies and
the second-order �̃-expansion result for larger values of �
should not be taken too seriously but most probably only
signals the asymptotic nature of the expansion. Therefore, we
are led to regarding the result of Refs. �14,15� as our basic
reference result. However, in view of the above expectations
on the validity of the results obtained from our restricted
two-dimensional RG flow, we also find it interesting to study
the first-order truncated expression y�=�− �̃

3 +O��̃2� of Eq.
�5�, which is seen to deviate from the second-order one
rather quickly for � increasing from �=1.5. Indeed, it is

interesting to see that the y� values obtained from this first-
order �̃-expansion turn out to be in better agreement with
those calculated from our simulations than those obtained
from the perturbative ones.

To obtain results valid to order O��̃2� for the exponents
from our simulations one should determine the flow pattern
including the additional two dimensions represented by the
leading “least-irrelevant” parameters, namely the sixth-order
coupling coefficient u6 and the short-range lattice interaction
coefficient K2. In principle, it should at least be possible to
extend the present RG flow calculations to the three-
dimensional parameter space �u0 ,r0 ,K2� by using the method
of Ref. �10� to determine the coarse-grained short-range gra-

dient coefficient K̃2 for any given K2�0. In particular, this
extension should help to clarify the source of the mentioned
discrepancies and also be useful to study the onset of cross-
over from long-range to the short-range critical behavior in
the limit �→2−�SR. However, such simulations and the fol-
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σ=1.65
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FIG. 3. �Color online� Results obtained for parameters L=36,
K�=1, l=9, b=9 /7. Top: Comparison of RG flow fixed point loca-
tions found from simulations and perturbation theory �lines are a
guide to the eye�. Middle and bottom: Exponents yt and �.

0 25 50 75 100 125 150 175
u0

�0.8

�0.6

�0.4

�0.2

0

0.2
r 0

FIG. 2. Global topology of RG flow in the �u0 ,r0� plane as
computed from the perturbative approximation, Eq. �9�. Parameters
L=36, �=1.65, l=9, b=9 /7.

TABLE I. Comparison of exponents y� ,� for various values of � at L=36, l=9, b=9 /7 calculated from simulation, perturbation theory,
first- and second-order �̃-expansion, and an interpolation of the data of Ref. �14�, respectively.

�

y� �

Simulation Perturbation O��� O��2� Ref. �14� Simulation Perturbation O���

1.58 1.5290 1.53642 1.52667 1.52023 1.5198 0.1771 0.1789 0.16

1.60 1.5376 1.54666 1.53333 1.52347 1.523 0.1941 0.2400 0.2

1.64 1.5588 1.5751 1.5466 1.52808 1.52789 0.2889 0.32724 0.28

1.65 1.5595 1.57995 1.55951 1.52887 1.52886 0.3066 0.36680 0.3

1.70 1.5824 1.6165 1.56667 1.53088 1.53275 0.4066 0.523 0.4
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lowing analysis of results would require extensive numerical
work, which is why we must postpone them to the future.
Nevertheless, we hope to have demonstrated that even
though our method may not be the perfect tool for a high
precision determination of critical exponents, it allows us to
study the change in the topology of the RG flow of the long-
range Ising model with varying �̃, something that—to our
knowledge—has not been achieved with simulations before.
Moreover, the numerical analysis of the flow pattern around
the nontrivial fixed point sheds light on the role of the vari-
ous approximations made in calculating universal quantities
both qualitatively as well as quantitatively. We also expect

our method to offer insight into the nature of the RG flow for
other systems with long-range interactions. In particular, we
plan to apply the method to the problem of fluctuating elastic
membranes �18� and membranes with antiferroelectric water-
filled nanopores �19�.
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